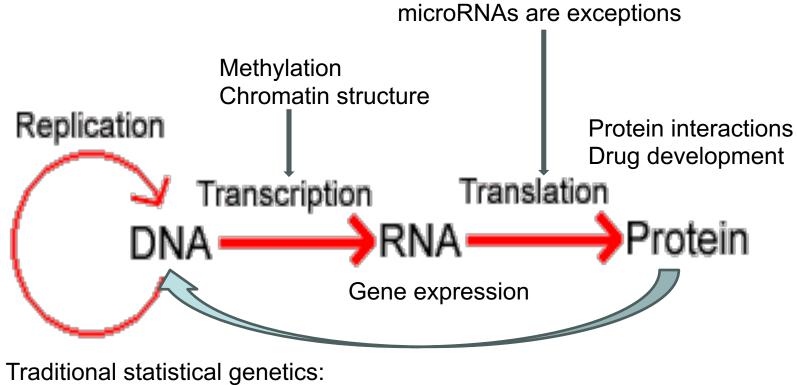
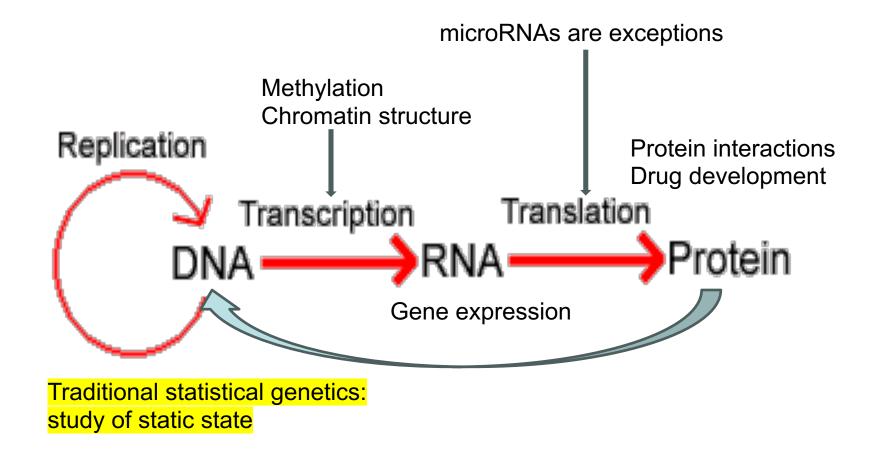

Stat 8750.04 – Autumn 2023

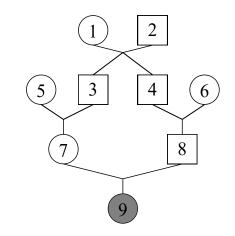

Some Random Notes on Statistical Genomics and Bioinformatics

The Human Genome

The Central Dogma of Genetics (simplistic view – one-way street)



study of static state


Statistical Genetics/Genomics/Bioinformatics

- Studies of randomness in the genome (more traditional sense; the DNAs)
- Studies of gene expressions and protein networks
- Understanding (post) transcriptional regulations
- Investigate host-microbes/pathogen association (e.g. microbiome)
- Related/overlapped with bioinformatics (biodata mining; multi-omics)
- Interdisciplinary area in which probability modeling and statistical methods are used to
 - analyze genetic data
 - understand biological processes
 - aid medical researches

Data for Genetic Association Study

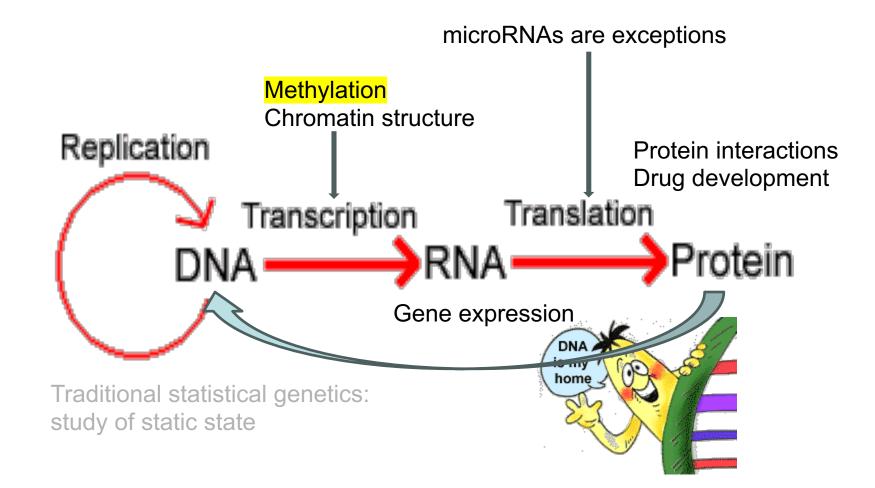
- Phenotype (observable)
 - Binary (e.g. hypertensive status)
 - Quantitative (systolic/diastolic blood pressure)
- DNA data marker genotypes (SNPs single nucleotide polymorphisms)
 - A: major; a: minor allele with coding 0 (AA), 1 (Aa), 2 (aa)
 - Directly using ACGT
- Family relationships
 - Pedigree (graph)
 - Triplet identifier: id, fid, mid

Data Examples

• Individual-level data

1 1 0 0 1 ΑΑ 1 ΑΑ ΑΑ ΑΑ AA 2 1 0 0 1 1 AC AC AC A C A C 3 1 0 0 2 1 ΑΑ ΑΑ ΑΑ ΑΑ AA 4 1 0 0 2 1 AC AC AC A C A C

• Summary statistics


Chr SNP A1 A2 Freq bp b se D 761732 C Т 0.1379 rs2286139 -0.0104056 0.00732416 0.155397 1 0.00827054 0.447955 rs12562034 768448 A G 0.10475 -0.00627592 1 0.247975 0.00587444 0.107243 rs4970383 838555 A 0.00946201 1 С rs1806509 853954 C 0.3912 0.0152744 0.00523012 0.00349507 1 Α 1 rs13302982 861808 A 0.018025 -0.0180122 0.0189517 0.341895 G

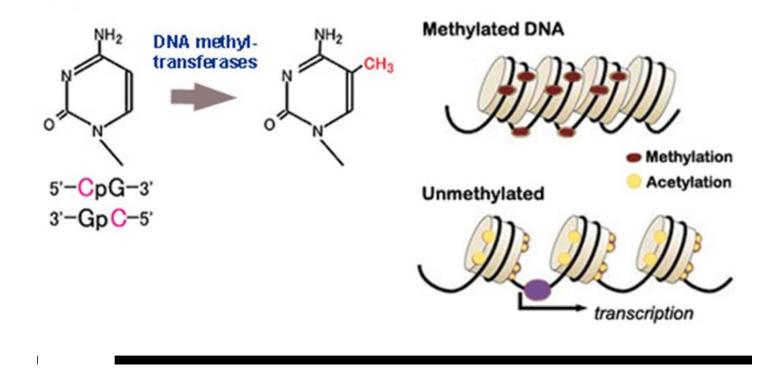
Research Areas (Stat Gene)

- Segregation analysis/Linkage analysis/association studies, including GXG and GXE (disease gene mapping)
 - Single trait/multi-trait; single variant/set-analysis;
 - Individual-level data/summary statistics
- Challenges
 - Missing data (Different platforms; imputation)
 - Non-independence (known relationships, cryptic relatedness)
 - Heterogeneity, population stratification, non-reproducibility
 - Non-linear relationships
 - Complex architecture polygenic risk score
 - X chromosome

Commonly Used Statistical Methods

- Fisher exact/Chi-square tests for contingency tables
- Generalized linear model (LM and logistic regression)
- Mixed effects models (dependency)
- Dimension reduction /regularization methods
- Kernel-based methods
- Mixture modeling (varying coefficients)
- Multiple testing

The role of Epigenetics


• A genome may have trillions of cells of different types, each carrying essentially the same genome in its nucleus.

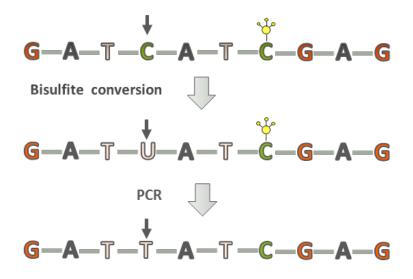
- The differences among different types of cells are determined by how and when different sets of genes are turned on or off.
- The epigenome (second set of genome) controls many of these changes to the genomic functions.
 - These epigenetic marks do not change the underlying DNA sequences.
 - Rather, they change the way that cells use the DNA's instructions.

DNA Methylation

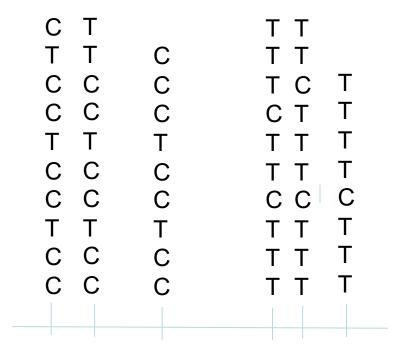
- Methylation is the most well-known and best characterized epigenetic mark in eukaryotes
- First discovered epigenetic mark and remains the most studied.
- Involved in normal cell (embryonic) development differentiation, genomic imprinting, lyonization and autoimmunity
- Aberrant DNA methylation, especially those occurring in the gene promoters, can lead to disease and malignancy through transcription repression
- DNA methylation plays a crucial role in the development of nearly all types of cancer

DNA Methylation and Disease - simplified cartoon guide

DNA Methylation Types:


5-methylcytosine (5-mC)

5-hydroxymethylcytosine (5-hmC)


5-formylcytosine (5-fC)

5-carboxylcytosine (5caC)

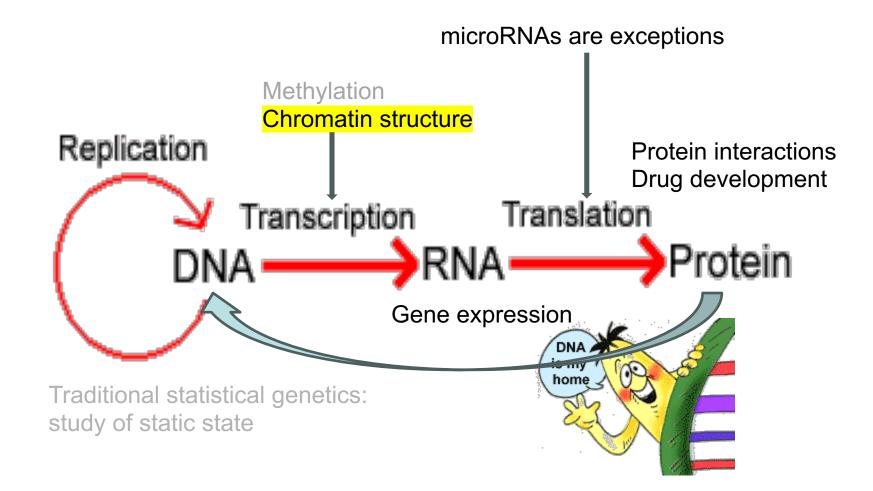
BS-seq Data

- Each nucleotide resolution read is a binary variable
- Data at neighboring sites are more similar
- Missing data may exist

Sample Data

• Sequencing data (Binomial data)

chr	sites	g1c1	g1m1	g1c2	g1m2	g1c3	g1m3	g2c1	g2m1	g2c2	g2m2	g2c3	g2m3
chr21	9413763	6	3	9	6	7	2	8	5	13	9	10	10
chr21	9419355	10	7	19	14	10	8	14	14	9	6	8	8
chr21	9420237	4	3	7	7	7	6	6	5	8	6	5	4
chr21	10571455	26	21	12	9	13	5	23	22	14	14	13	13
chr21	10572570	3	1	12	12	15	7	3	2	9	7	3	3
chr21	10576274	5	3	5	5	5	4	5	4	5	5	6	6


• Microarray data (beta values)

sites	group1_1	group1_2		group1_12	group2_1	group2_2		group2_12
29407	0.2409	0.0321		0.0051	0.0594	0.3331		0.0988
29425	0.2921	0.0896		0.0299	0.6138	0.4514		0.1503
29435	0.2584	0.0241	••••	0.0289	0.0002	0.0881		0.1354
1006781	0.9099	0.3094		0.2247	0.6834	0.5297		0.3761
1006818	0.9629	0.7839		0.9899	0.5172	0.6285		0.9832
1006915	0.0937	0.7839		0.9242	0.6673	0.1540		0.5892
	29407 29425 29435 1006781 1006818	294070.2409294250.2921294350.258410067810.909910068180.9629	294070.24090.0321294250.29210.0896294350.25840.024110067810.90990.309410068180.96290.7839	294070.24090.0321294250.29210.0896294350.25840.024110067810.90990.309410068180.96290.7839	294070.24090.03210.0051294250.29210.08960.0299294350.25840.02410.028910067810.90990.30940.224710068180.96290.78390.9899	294070.24090.03210.00510.0594294250.29210.08960.02990.6138294350.25840.02410.02890.000210067810.90990.30940.22470.683410068180.96290.78390.98990.5172	294070.24090.03210.00510.05940.3331294250.29210.08960.02990.61380.4514294350.25840.02410.02890.00020.088110067810.90990.30940.22470.68340.529710068180.96290.78390.98990.51720.6285	294070.24090.03210.00510.05940.3331294250.29210.08960.02990.61380.4514294350.25840.02410.02890.00020.088110067810.90990.30940.22470.68340.529710068180.96290.78390.98990.51720.6285

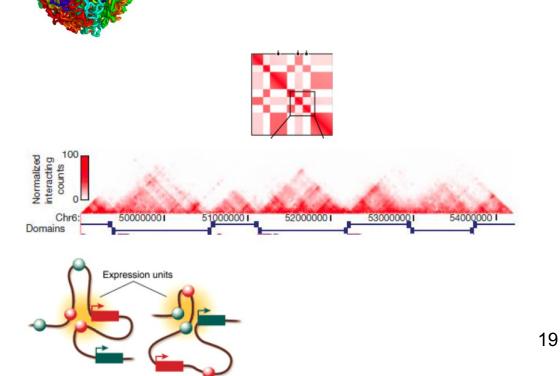
16

Commonly Used Methods for BS-seq and Microarray

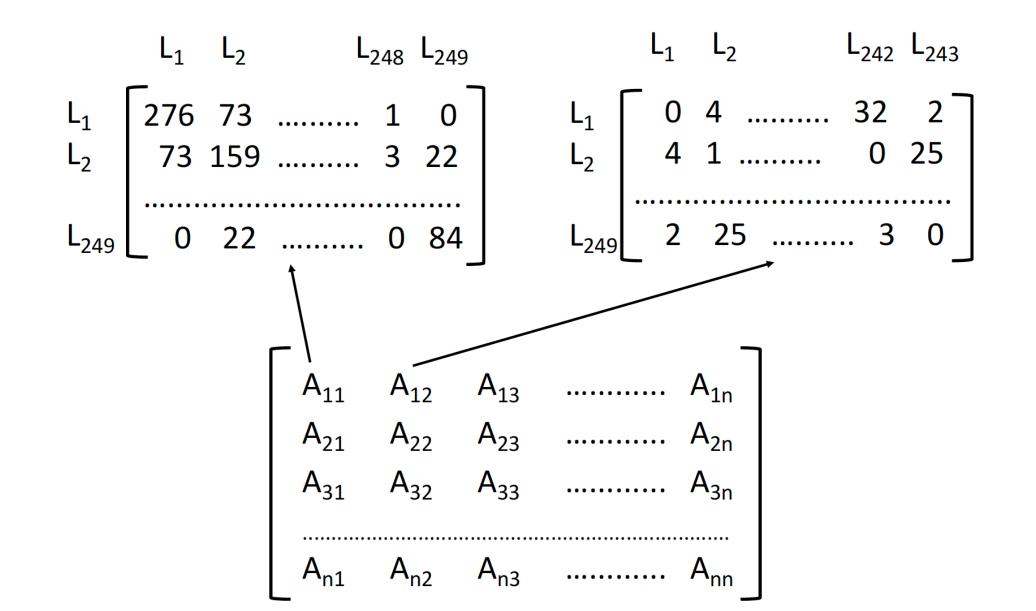
- Nucleotide resolution binomial data (BS-seq) or beta value (%methylation: Infinium methylation 450K, methylationEPIC)
 - Fisher's exact, logistic regression (BS-seq)
 - Beta-binomial distribution (BS-seq)
 - Smoothing (splines)
 - Empirical Bayes
 - Mixture modeling
 - Bayesian informative priors

Hierarchical Structure of a Genome

The 1-D genomeLengthDiameter $2.0 \times 10^6 \mu m$ $10.0 \mu m$ 2.0×10^5



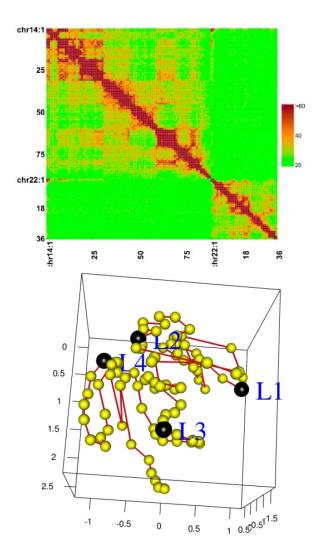
The 3-D genome


Compartments (A/B: active/inactive)

Topologically associated domains (TADs)

Long-range gene regulation (looping)

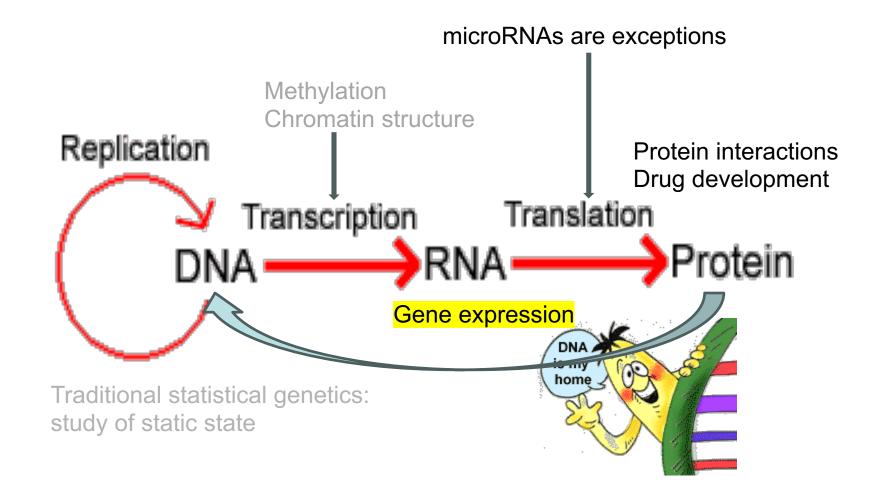
Data Structure



20

Data Visualization

Lymphoblastoid cell line - 1 Mb resolution

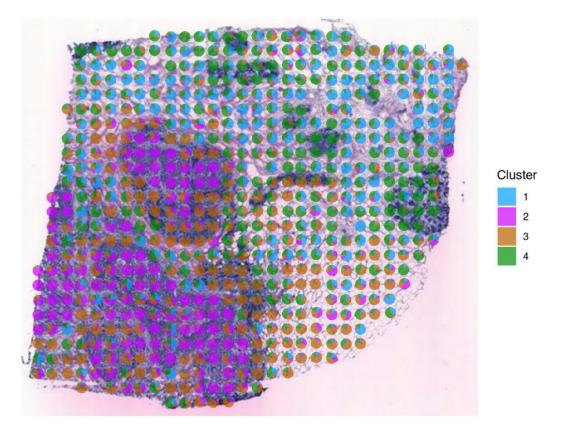

				chr14			chr22					
		11	12		188	189	11	12		135	136	
	11	1079	657		0	1	990	218		7	1	
	12	657	1413		3	0	456	34		3	1	
chr14	:	÷	÷	÷	÷	÷	÷	1	÷	:	1	
	188	0	3		733	130	0	1		0	2	
	189	1	0		130	444	1	1		0	4	
	11	990	456		0	1	350	80		5	1	
	12	218	34		1	1	80	846		13	2	
chr22	:		÷	:	:		÷	÷	÷	÷	÷	
	135	7	3		0	0	5	13		694	88	
	I 36	1	1		2	4	1	2		88	308	

21

Challenges, Questions, and Methods

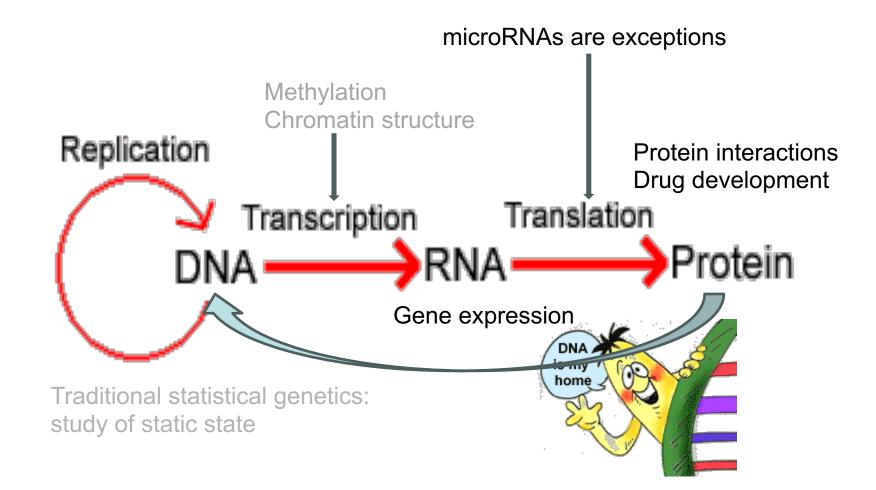
- Challenges in analyzing Hi-C data
 - Dependency, overdispersion, sparsity
- Scientific questions of interest (from statistical perspective)
 - 3D structure and variations
 - Significant interactions peak detection
 - Clustering and subtype discoveries
- Commonly used methods/models
 - Zero-inflated and zero-truncated models
 - Negative binomial/Poisson-Gamma modeling
 - Random effects
 - Optimization, Bayesian, empirical Bayes

Data for Gene Expression Analysis


• Bulk RNA-seq data

	Gene.ID	Gene.Name	SRR975551	SRR975552	SRR975553	SRR975554
1	ENSG0000000003	TSPAN6	6617	1352	1492	3390
2	ENSG00000000005	TNMD	69	1	20	23
3	ENSG0000000419	DPM1	2798	714	510	1140
4	ENSG0000000457	SCYL3	486	629	398	239
5	ENSG0000000460	Clorf112	466	342	73	227
6	ENSG0000000938	FGR	75	95	158	107

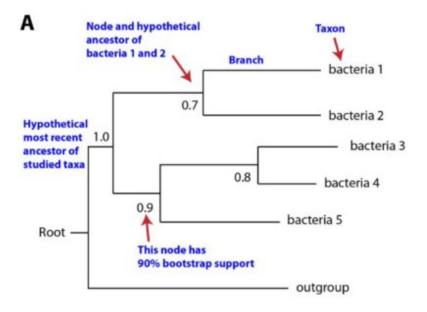
Spatial Transcriptomics Data


3x343x303x313x323x33ACTB2.5112.1162.9103.7922.432CD741.7442.3231.6663.0610.000CFL10.0002.1161.6661.9092.432CST33.0092.6640.0003.0612.925ERBB21.7443.4610.0003.4733.584

x y 3x29 29.36387 422.9227 3x30 29.05259 437.0339 3x31 29.10447 453.1166 3x32 29.20823 468.3692

Challenges, Questions, and Methods

- Challenges in analyzing transcriptomics data
 - Dependency, overdispersion, sparsity (scRNA-seq)
- Scientific questions of interest (from statistical perspective)
 - Differential expression
 - Clustering (single cells, and ST)
 - Cell decomposition (ST)
- Commonly used methods/models
 - Normalization/Preprocessing (quantile normalization)
 - Zero-inflated Negative binomial/Poisson-Gamma modeling
 - Bayesian, empirical Bayes
 - Multiple testing


Metagenomics, 16S rRNA, and Shotgun Sequencing

- Metagenomics is the study of genes from multiple genomes altogether.
- Applied to samples collected from the environment without the need for isolation and lab cultivation of individual species.
- 16S rRNA studies revel a profile of diversity in a natural sample, and that a vast majority of microbial biodiversity had been missed by cultivation-based methods.
- Shotgun sequencing can consider the entire samples (all genes) but can only construct Operational Taxonomic Units (OTUs).

Data and Some Research Questions

- Metagenomic count matrix row samples, column OTUs (taxa)
- Compositional in nature
- Sample may be placed in a phylogenetic tree (16S rRNA)
- Dissimilarity measure between samples or taxa (OTUs) UniFrac distance
- Study microbiome communities
- Relate similarity in composition of microbes to similarity in a trait (like genetic association studies)

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nm} \end{bmatrix}$$

